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ESTIMATE OF THE GUARANTEED 

NON-LINEAR DIFFERENTIAL GAME 

VALUE IN A 

OF APPROACH* 

A.G. PASHKOV 

A non-linear differential game of approach is considered. An estimate 
of the guaranteed value function is derived. The formalization of the 
problem follows /l, 2/, using constructions based on the conjugate 
derivative of locally Lipschitzian functions and the Hamiltonian 
function characterizing the dynamics of the non-linear systems /3-i'/. 
An auxiliary linear differential game of approach is introduced with a 
known u-stable guaranteed value function. The construction are based 
on the results of /a-10/. The Hamiltonians of the original non-linear 
system and the auxiliary linear system are not assumed to be related in 
any special way. An example is considered in which the proposed 
approach is used to construct a bound on the guaranteed value function. 
The problem is related to the previous studies /U-16/. 

1. The equations of motion and rwuard functionat. We consider a controlled system 
described by the equation 

x' = f (t, z, u, u), t E I, z E R”, u E P, v E Q (1.1) 

where I = [to, 61, f: Z X R” X P X Q -+ R”, P and Q are compact sets in R* and RQ respectively. 
The function f is assumed to be continuous and satisfies the Lipschitz condition 

where G is a bounded region in R” containing all possible motions of the system (1.1) that 
leave the given compact set. 

Let 11 x 11 = (x, t)"., where the symbol (,> denotes the scalar product. The motion of 
system (1.1) is considered in a fixed interval, tE I. 

The reward functional y in this game has the form 

v(X(*))=c(r@)) (1.2) 

where the function c: R” -+ R1 is Lipschitzian. 
The formalization of the differential game (l.l), (1.2) is based on /l, 2/. Let 

I x R”-+R’ 
oO: 

be the value function of the game. We know /2/ that it satisfies the Lipschitz 
condition 

sup 1 COO (8’1, 291)) - COO (t(Z), 232’) I x (I t(l) - t(2) 1 + (1 r(l) - &a II)-’ 4 be 

(N, t(i)) E I x G (i = 1, 2), I t(l) - t@)( + 11 z(1) _ 5(a) 11 > 0 

By definition, we have 

0" (0, x) = IJ (z) (1.3) 

2. Auzi1kr.y differential games. We introduce an axuiliary system described by the 
linear equation 

z' = A (t)r + B (t)+ + c (t)s, t E I, x E R”, u1 E P,, v, E Q1 (2.1) 

Here P, and 91 are compact sets in RP and RQ, respectively. 
and c(t) are assumed to be continuous. 

The matrix functions A (t), B(t) 

Assume that some u-stable function o0 (t, 5): Z x Rn --f R’ 
system (2.1) (in particular, 

is defined for the auxiliary 
the value function of the game), satisfying the relationship 
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0O(O, .r) -7 u (x) (2.2) 
We introduce another auxiliary game. To this end, we define the function cp 0, x) by 

the expression 

B(t.I)=~~lH(t,r,s)--Hl(f,ss)l, S*=(SCRU: /Is/l<l) (2.3) 

Here H(t,s,s) and H,(t,z,s) are the Hamiltonians of the original system (1.1) and the 
auxiliary system (2.1), respectively. 

Consider the auxiliary differential game described by the equation 

2' = A (t)x + R (t)q f C (t)ul + cp (1, z)u, t E I, z E R" u1 E P, (2.4) 

~1 G 91 

where A (t), B(t), C(t) are the same matrices as in Eq.(2.1), the function rp(t,s) is defined 
by (3.1), and v is an n-dimensional vector, //VII < 1. 

We assume that the constraints on the controls UI? u1 and the reward functional in the 
differential game described by Eq.(2.4) are the same as in (2.1) and (1.2), respectively. 

Remark 1. The Hamiltonian function of the system (3.2) given by 

HI (i! z, s) + 'p (1. 5) 0 s (I (2.5) 

and the Hamiltonian function of system (1.1) (using expression (2.3)) are related by the 
inequality 

H, (t, 5, 8) -I- cp (t, 2) II 3 /I > ff (1. 2, s), (t, z, 4 E I x G x RR (2.6) 

3. &%%ment of the prob2em. It is required to construct a u-stable function ClJ*l (t, r): 
I x R"-R' for the original non-linear differential game (l.l), (1.2) that satisfies the 
Lipschitz condition and the boundary condition 

(II81 (e, 2) = 0 (I) 

We will seek the function ~~l(t,s) in the form 

wZ1 (t, x) = w'= (t, I) + Ao' 0, 5) + A@ (t) (3.1) 

Here o"(t,r) is the value function of the auxiliary linear game (2.1), (2.2), and Ao' (t, Z) 
and A+(t) are some differentiable functions of their arguments. The relationships that 
these functions satisfy are given below. 

We assume that 

UC (t, 5) _ mar [or0 (t, L), QzO 0, 41 (3.2) 

where w,"(t,r)(i = 1,2) are given smooth functions. Let 

ai (t, E) = HOP (t, ~)i8t, bi (1, X) = grad,o{" (t, z), b, # b, (i = 1, 2) 

a (t, 5) = Aa, + (1 - Va,, b (t, Z) = hb, + (1 - Qb, 

c (t, z) = grad, Ao' (t, x), d (t, x) = b (t, I) + c (t, 2) 

We assume that the differentiable function Awl(t,z) satisfies the relationships 

-aAor(t, $)/at = ,,s;pI1ll d (t, z)II cp (t, z), Ao' (0, 5) = 0 (3.3) 

The differentiable function A* 0) satisfies the inequality 

-dAv((t)/dt > auP {min max (d(t,s), 
owXE[OJIXQ “I VI A(t)" + B(t)u, + c(t)~)- 

4. Solution of the probtem. We know /3/ that the upper conjugate derivative of the 
function 011 0. 4 is defined by the expression 

mJ,n max (b(t, z), A(t)l+B(t)ul+C(t)u1)). A+(O)=0 
% 

D*o,l(t,s)I(S) = sup (<S! h> - a_o,l(t, z) I (h)) 
hERn 

(4.1) 
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where a_w,l(t,z)j@) is the lower derivative of the function LOB1 (1, .r) with respect to the 
direction (1,h). 

For any we1 (t, .z) E Lip, (t, .z) E I X G the function 11-r &o,'(t,.r) takes finite values 
and satisfies the Lipschitz condition in the entire space fin. Since the functions A% 0) 
and Awl(t,z) are differentiable, we will write the upper conjugate derivative D*Oi, (t, z)i(s) 
in the form 

D*o,r (t, x)/(s) = sup ((s - c (t, I), h) - d_(l)" ft. -z)/(h) - dAtu' (t, +?t-- 
hfR" 

(4.2) 

dA@ (t),'dt = D*w" (t, r)l(s - c (t, z))- 8Aor (t, .z)/& - dA$$t)idt 

The symbol D*w"(t,s)((.) is the upper conjugate derivative of the function o0 at the point 

0, 5). 
Let us derive an expression for the upper conjugate derivative of the function CO0 (t, z). 

If the function o"(t,s) is differentiable in the position (t,z)EI x G in the game (2.11, 
i.e., the maximum in (3.2) is attained either for i = 1 or for i L_ 2 , then 

Now suppose that the function w’(t,x) is non-differentiable in some position O*, r*) 
Then we have the equality 

o* (t*, 5*) = DlO@,, z,) = (')EO (t,. z,) 

Write the expression for the conjugate derivative in these positons, substituting s - 
ck.4 for s. Then 

D*o“(t, 5) 1 (s - c (t,4) = [ ; ~f’~~ :(f,;;~;;;f’ “3 Gh < i 

We will show that the function 6~~~ (t,s) defined by relationships (3.1)-(3.4) is u- 
stable for the original non-linear game (l.l), (1.2). To this end, by Theorem 1 of 131, we 
have to check the inequality 

D*w,r (t, r)f(s) > H ft, 5, s), V (8, 2, s) E I X G x I?" (4.3) 

By remark 1, it suffices to check the inequality 

PO, (r, +I (a) 2 H, (t, z, sf 4- q~ (t, 4 tsll, V ($7 3, 9 = J x G x RR (f4 

By (4.21, for inequality (4.4) to hold it suffices to have the following inequality: 

D%P(t. z) I@ - c (t, x)) - aAm' (1, .z)/ at - dA$ (t)/ dt > H, (1, z, s) + (*a 

‘p ct. 4 I J I 

Let us check inequality (4.5). By assumption, o'(t,z) is a U-stable function for the 
auxiliary linear problem. Therefore, by Theorem 1 of /3/ it satisfies the inequality 

--(1 (t, 3) > H, 0. 2, b (1, 5)). v (& zl E 1 x 6, OChdi (4.6) 

By the assumptions of Sect.3, the functions Ao0' ft. 4 and A++(t) satisfy the relation- 
ships 

Adding (4.61, (4.7), and (4.8), we obtain 

--a (2, z) - 8Ao’ (t, z) ! L’t - dA.rp (t) / dt > 

WI (ts 3, b (t, 4) + g[“rs uB d (6% 4 1 ‘P (t, 4 l- 

(1. ri;umc 
(Hi (tr Y, d @, Y)) - 4 (t, Y. b <.I Y) > 

HI (t, *, d (:. 4) f SIIP 
II )Iez&l 
d (6 41 'P (I, 4, v (t, 4 E I x G, O<k<i 

The last inequality implies that the function o~~@,z) is u-stable for the original non- 
linear differential game (l.lf, (1.21. 
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Remark 2. Denote by a* (t, I) the guaranteed value function in problem (l.l), (1.2), 
which is defined according to the theorem of /13/ by the expression 

UP (L, z) = 00 (f, 2) -;- mc* (I3 - t) 

where o"(t,z) is the value of the auxiliary game (2.1), (2.2), m is the Lipschitz constant 
with respect to x of the function w" (t, z), and the value of the constant C* is obtained 
from the expression 

Thus, if 

then 
mC* @I - t) > Ao' (t, z) + A$ (I), v (t, e) E I x G 

on'@, I) <e* (1. I), v (t, I) E I x G 

Remark 3. In the case 'p (t, z) = cp (0, we have A* (t)z 0. 

5. &us&e. Consider the problem of the approach of two objects (pursuers) to a third 
object (evader). The motion of the pursuers P, (YY’. I(‘)) f is described by the equations 

Here ,(i) is the control vector of the pursuers, which is selected subject to the above con- 
straints, a>0 is the linear coefficient of viscosity, and e>O is the quadratic coef- 
ficient of viscosity (a small quantity). The constraints imposed on the value of e are given 
at the end of the paper. 

The motion of the evader E(z,, z,) is described by the equation 

2,' = z., +' = _&' - “1. I%’ = 9, 24’ = -b* + up. q + I+~ \i va > 0 (5.2) 

We assume that 

v>* (5.3) 

Fix the ending time of the game t= 8. The reward in the game is defined by the continu- 
ous function 

u (s) = mill (0, (2 (e)), al (Z (0)) (5.4) 

a, (2 (9)) = I (e) - zI (e))z + (of) (e) - zs (epp (i = 1, 2) 

The argument s(O) is the phase vector of system (5.1)-(5.3). From (5.4) it follows 
that the reward function is non-convex. By (5.4) the reward in the game is the distance 
between the evader and the nearest pursuer at time t= 8. The strategies of the players and 
the corresponding motions are defined in accordance with /l, 2/. 

The problem is stated as follows: for any initial position of the game (5.1)-(5.4), 
construct a u-stable guaranteed value function. 

According to the proposed approach, we introduce an auxiliary linear differential game 
with the dynamics of the players described by the equations from /9/. The motion of the 
pursuers P, in the auxiliary problem is described by equations corresponding to (5.1) with 
e E 0. The evader E in the auxiliary game moves according to Eqs.(5.2), where 1) is the 
control vector. The reward in the auxiliary problem is given by (5.4). Note that the con- 
trols u and V, as well as the constraints on their values in the auxiliary problem, are 
identical with the controls u and v and the constraints on their values in the original 
problem (5.1), (5.2). As in /15/, we assume that in the auxiliary problem 

y> P, VlB>PIU (5.5) 

(with at least one of them a strict inequality). The value function of the auxiliary game 
for all possible positions was derived in /15/. We denote this function by o"(t, 2) (in /15/ 
it is denoted by e, (t, z)). 

We reduce the original system (5.1)-(5.4) and the auxiliary system to a standard-form 
differential game by the change of variables 
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By (2.3) and (5.6), we have 

where the components of the vector SE S* are given by 

8, 2 sI = Ss :~: "a = ,Q ~= &.s S) 9111 " (5.8: 

s1 =- ZL 1 y; 1 / ‘p* (t. .z) (i = 1, 2). Sjmm JjIy,‘/iC[‘* (i, .Z) (1 = Iis 12) 

1 y; 1 -2 (ss* + 3#* , / y; I -= (z,,a .rJ 8 

'P* (t! 2) = (I Y,' I 4 +- I Y,' I v I(%" -1 SLW : (.q,'1 Z,,")+ 

I Yl. IL = Inn; IYI'I. I Y,' Imax = PI" I Y2' I 

Recall that in /15/ we identified the phase-space region W in which there is essentially 
a "two after one" game and showed that the function oO(t, Z) is expressed in W by the 
equality 

0" (f. z) = max ((OIY (1. z), o*- (1. z)) (5.8) 

which, combined with (5.6), gives 

O&O (1, 3.) -= [(D (1, 5) - 4s)' -t F? (1, zr)I"T - , (t) (5.iO) 

P1 7 24 -t Ep (t) zg * IHa (1) - K* (1. r)l'ix 

where i-= i corresponds to plus and i- 2 to minus. Moreover, from /15/ it follows that 

D (l, 2) == I) + E, (I) 58, r (1, .c) 5, ‘- Efl (t) x5 (5.11) 

K (t, I) = 51 + Efl (t) z,, n (I) =J VP-' (8 .~ 1 -- ER (f)) 
r (1) = pa- (e - t - E, (t)): Ey (t) = (1 ~~ csp (-J, (e - 1))) y-1, y = a, p 

By /15/, the functions &It0 (t, I) (i = 1, 2), are differentiable for all (t, Z)EI x G. 
We can check that on the singular surface S consisting of positions (L, 5) for which 
2) = w20 (f, 2) we have the equalities 

II bl II = II b, II = II b. II d D + Eap (0 + EBP (01”~ (5.12) 

Using (5.12) and (5.11), we obtain 

h=;1l II hb, + (s -- A) 4 II =- II b, 0, It. 4 E S (5.13) 

The guaranteed value function in this example is defined by expression (3.1), in which 
2) is given by (5.10), (5.11). Eq.(3.3) for this examples preserves its form, with 

‘p (t? 4 defined by (5.7), (1.8). 
We can show that to within O(P) the function Ao'(I,s), defined by 

Ao'(t, 2) = "v* (r) B (1,8), B(r, 0) = \I]0 (T) I/dt 
’ f 

is a solution of Eq.(3.3). 
Consider the function Ao,'(t, z) which is a solution of the 

- 8Ao.l (t, I) / af = e~p, (z) (11 b, (t) 11 + EC (t, I) B (t, 
A.0,' (8, z) = 0 

equation 

8)) 

(5.14) 

where the right-hand side majorises the right-hand side of Eq.(3.3) with Aol(t, Z) substituted 
from (5.14). We can show that the inequality 

A,o' (t. z) c; Ao,' (t, z) = EW* (I) (B (t. 8) + ec (t, z)A (t)) 
a 

A(t)= SB (t, 8) dr 
t 

(5.15) 

holds for all (t, Z)EI x G. 
The function A*(t) must satisfy Eq.(3.4), which for this example takes the form 
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Here 
% = aAwl9 (1, 2) /ax, = P (t, 2) E, (1) / [R” (1) -~ KY (t, 5) -;- F” (t. s)]” 

Y = @A%’ (6 4 /aa = --IHP (t) - K* (t. .z)] E, (f) / (~2 (t) - K’ (t, z) + P (t, z)]“’ 

bs, = aAw’ (1, z) / ar, = 2eB (t, 6) I 1 yl’ 1 %, ; ‘P, (f, z)] (i = 5,6) 

*J = aAd (t. Z) / 83 = 2eB (t. 0) II y,’ 1 ‘z, / ‘P* (t, s)] (j = 11, 12) 

(5.17) 

Making the required transformations in (5.16), substituting Asss. drs, AS,,, A%,%. 8s from 
(5.17), and changing the inequality to an equality, we obtain an equation for A*(t): 

dA$ (t) / dt = -2eB (t, 8) I$” 9 (yl’), A$ (9) = 0 (5.18) 

9 (Yl’) == --a (Yl? + WI’ 

We can show that 

1 - Illax J1 (y,‘) = 
a I Yl’ IL, + P I I/I’ I&. I I/l’ Im:,r <p/w 

VI’ Pw4 I Yl’ Imax > lww 
(.7.10) 

From (5.18), using (5.19), we obtain 

Alp (t) = 2e max + (y,‘) A (t) (5.20) 
I,’ 

Using (5.8), (5.9), (5.10), (5.15), and (5.20), we obtain a final bound on the guaranteed 
value in this example: 

Remark 4. Let us compare the value (5.21) with the guaranteed value a* (t, z) for this 
example obtained according to /13/: 

0* (t, 2) = oO((t, I) + Pm (0 - t), C* = el/$p/a’ 

m = a$0 b, (t) (1 = (2 + E,' (to) + E$ (to)]“’ 

(5.22) 

e"(t.2) is defined in (5.9), (5.10), and m is the Lipschitz constant of the function ,o"((l,z) 
defined by (5.7). 

To compare (5.21) 
value (5.21), assuming 

The other initial 
ference of the values. 

and (5.22), we take initial conditions that are the "worst" for the 
that (Q, .Q) and (zuO, sIlu) satisfy the equalities 

[(z,O)'+ (z0o)1"S = Pi% I(%10)* + (21, ) 1 0 P l/S = p,a (5.23) 

coordinates of the players PI (i= 1,2) and E 
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